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Abstract. We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-
intrinsic-parity sector at order p6. The Lagrangian contains 24 in principle measurable terms and no contact
terms for the general case of Nf light flavors, 23 terms for three and 5 for two flavors. In the two flavor
case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement
the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated
and presented as well.

1 Motivation

Effective field theory methods are widely used in physics.
Many rely on the spontaneous breaking of an internal con-
tinuous symmetry, represented by a compact connected
Lie group, G, to a subgroup, H. In the breakdown “mass-
less excitations” appear, which are usually referred to as
Goldstone boson modes, πa(x). They parameterize the
coset space G/H in terms of a general spacetime depen-
dent G transformation U(π) that transforms non-linearly
under G and linearly under H. To be more definite, under
a global transformation g ∈ G one maps π → π′ via

gU(π) → U(π′)h(π, g), (1.1)

where h(π, g) is an element of the unbroken subgroup
H [1]. In order to parameterize the low-energy dynam-
ics of a physical system one constructs the most general
G-invariant Lagrangian density as a sum of monomials,
which is an invariant product of covariant derivatives de-
fined on the subalgebra corresponding to H, H [1]

L(U−1DH
µ U , . . .). (1.2)

External fields and explicit symmetry breaking effects can
be included as well. However this procedure does not lead
to the most general G-invariant action S. As is well known
[2], operators in the Lagrangian density that are not in-
variant under G can lead to a G-invariant action if their
variation under G is a total derivative. These operators
form the anomalous sector and they arise already at the
classical level in the effective field theory.

The power of an effective field theory as given in (1.2)
is that its construction only relies on the symmetries of
the initial group, broken subgroup and some parameter

[derivative] expansion. The latter, with more or less phe-
nomenological insight, is related to the physical problem
under study. It is thus clear that the success of the ap-
proach depends on the construction of the complete string
of operators which form the Lagrangian. The general
recipe for the construction is based on writing all possi-
ble terms allowed by the continuous and discrete symme-
tries of the physical problem [3]. The omission of any term
would lead to an inconsistent parameterization of the low-
energy dynamics invalidating the effective approach. On
the other side a parameterization with redundant opera-
tors will make the identification of the relevant operators
in a physical problem difficult. Therefore it is convenient
to obtain the minimal structure of the Lagrangian den-
sity. Since a long time ago it is known that the anomalous
Lagrangian has a clear and nice geometrical interpreta-
tion [4]. For QCD-like theories, at leading order in four
spacetime dimensions and in the absence of external cur-
rents, it is constrained to contain a single term [5] fixed
entirely by the single generator of the fifth de Rham co-
homology group [6]. Several classifications of the relevant
operators at next-to-leading order have been performed
[7–9], but no agreement was reached regarding the number
of independent operators involved1. We clarify this issue,
in particular supplementing the previous analyses with a
geometrical missing ingredient: the Bianchi identities. To-
gether with the construction of a minimal basis at next-to-
leading order we provide the divergent part needed to can-
cel the ultra-violet behavior of the loop graphs. This to-
gether with the full list and infinities for the even-intrinsic-
parity sector of [11] completes the construction of the full
p6 mesonic Lagrangian. We use here the standard power

1 While we were preparing this manuscript [10] appeared us-
ing a different basis
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counting where quark masses count as p2 [12]. For an al-
ternative counting see e.g. [13].

2 Leading order Lagrangian construction

We shall focus the analysis entirely on four-dimensional
field theories where the free gauge group G is coupled vec-
torially to Nf massless Dirac fermions. All of them trans-
form according to some irreducible representation r of the
gauge group. Under the assumption of maximal break-
ing of chiral symmetry with simultaneous preservation of
maximal flavor symmetry there are three allowed scenar-
ios of spontaneous symmetry breaking [14] depending on
the representation r. We shall assume that the pattern is
given by [15]

SU(Nf )L × SU(Nf )R → SU(Nf )V . (2.1)

The leading-order anomalous Lagrangian in the ab-
sence of external sources is reduced to only a single term
[4]. In the case of a spontaneous symmetry breaking given
by (2.1) the homotopy group is trivial and a smooth in-
terpolating field between the four-dimensional Minkowski
spacetime and a five-dimensional ball, B5, can be found,
allowing then to write the action as

s[x] =
∫

B5

d4xdtL1, (2.2)

where L1 is a G-invariant density and its form is restricted
by integrability conditions. Using Poincaré’s lemma, (2.2)
can be cast in terms of a closed 5-form on G/H. The terms
that cannot be reduced to four-dimensional integrals are
directly obtained by the generators of the fifth de Rham
cohomology group H5(G/H;R). In the case where the
coset subgroup is a simple Lie group, H5 has a single gen-
erator

Ω5 =
−i

240π2 〈(U−1dU)5〉, (2.3)

which is the Wess–Zumino–Witten term. 〈A〉 corresponds
to the trace over the matrix A.

In order to describe phenomenologically relevant pro-
cesses, the Goldstone boson modes need to be coupled
to external gauge invariant sources. This obviously in-
creases the number of possible structures. All the new
structures are reduced to exterior derivatives of an in-
variant 4-form. Such exterior derivatives in terms of the
initial 5-form yield terms in (2.2) that can be written as
four-dimensional integrals of aG-invariant density. Explic-
itly the full action at next-to-leading order can be written
as [4]

S[U, �, r]WZW = − iNC

240π2

∫
dσijklm

〈
ΣL

i Σ
L
j Σ

L
kΣ

L
l Σ

L
m

〉
− iNC

48π2

∫
d4x εµναβ

(
W (U, �, r)µναβ

−W (1, �, r)µναβ
)
, (2.4)

W (U, �, r)µναβ =
〈
U�µ�ν�αU

†rβ +
1
4
U�µU

†rνU�αU
†rβ

+ iU∂µ�ν�αU
†rβ + i∂µrνU�αU

†rβ − iΣL
µ�νU

†rαU�β

+ΣL
µU

†∂νrαU�β −ΣL
µΣ

L
νU

†rαU�β

+ΣL
µ�ν∂α�β +ΣL

µ∂ν�α�β − iΣL
µ�ν�α�β

+
1
2
ΣL

µ�νΣ
L
α�β − iΣL

µΣ
L
νΣ

L
α�β

〉
− (L ↔ R) , (2.5)

where
ΣL

µ = U†∂µU, ΣR
µ = U∂µU

†, (2.6)

and (L ↔ R) stands for the interchanges U ↔ U†, �µ ↔
rµ and ΣL

µ ↔ ΣR
µ . The left and right sources, �µ and

rµ respectively, are defined in terms of the vector (vµ)
and scalar (aµ) ones as rµ = vµ + aµ, �µ = vµ − aµ. In
the case of two flavors, singlet vector currents need to be
included for phenomenologically relevant processes. The
Lagrangian remains the above one but with the singlet
vector field nonzero. The two flavor case with an axial
vector singlet as well is somewhat more complicated and
is discussed in [19].

3 Renormalization

In quantum field theory the corrections to the Born ampli-
tude will lead to unphysical ultra-violet (UV) divergences.
Those divergences should be at most polynomials in the
external momenta and/or masses, thus all non-analytical
divergences should cancel with each other. To define finite
quantities one needs the inclusion of polynomial counter-
terms that render any observable free of UV divergences.
In order to obtain the full structure of the needed poles
arising at one loop level in dimensional regularization we
follow the standard procedure and consider the fluctua-
tions around the classical solution of the equation of mo-
tion for the Goldstone boson matrix Ū

δS2

δU
= 0 ⇒ Ū . (3.1)

The subindex in the action functional refers in what fol-
lows to the chiral power. This allows us to write the ex-
pansion

U = u

(
1 + iξ − 1

2
ξ2 + . . .

)
u, (3.2)

where u2(x) = Ū(π(x)) and ξ(x) is a traceless hermi-
tian matrix. Equation (3.1) defines the equation of motion
(EOM) in terms of the covariant derivative of the u(x)
fields as

∇µuµ =
i
2

(
χ− − 1

n
〈χ−〉

)
, (3.3)

where

uµ = i
(
u† (∂µ − irµ)u− u (∂µ − i�µ)u†) ,

χ± = u†χu† ± uχ†u, (3.4)
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and with
χ = 2B0 (s+ ip) (3.5)

given in terms of the scalar and pseudoscalar sources s
and p respectively. B0 is a constant not restricted by chiral
symmetry and related with the quark condensate. For any
operator X the covariant derivative

∇µX = ∂µX + [Γµ, X] , (3.6)

is defined in terms of the connection

Γµ =
1
2
(
u†(∂µ − irµ)u+ u(∂µ − i�µ)u†) . (3.7)

We are interested in the second variation of the WZW
action, ξ2 terms. Expanding the functional action up to
this order

S[U, j] = S2[Ū , j] + S[Ū , j]WZW

+

(
1
2
ξi

δS2[Ū , j]
δŪi(x1)δŪj(x2)

ξj +
1
2
ξi

δS[Ū , j]WZW

δŪi(x1)δŪj(x2)
ξj

+S4[Ū , j] + SW
6 [Ū , j]

)
. (3.8)

Here S2 denotes the order p2 chiral action, S4 the order
p4, and SW

6 the p6 one of odd intrinsic parity. The first
order derivative of SWZW does not contribute to the order
we are considering.

It is easy to verify that the second variation of the inte-
gral over the five-dimensional manifold, can be expressed
as an integral over the ordinary four-dimensional space-
time (the integrand is a total derivative) [16,17]. This gives
us a hint about the possible operators that can appear at
the next chiral order. The result of the various terms com-
bine in a chirally covariant form,

δSWZW =
iNc

96π2

∫
d4xεµναβ

{〈
(ξ∇µξ − ∇µξξ)

×
[
i
8
uνuαuβ +

1
2
uνf+αβ +

1
2
f+ναuβ

]〉

+
〈
(ξuµ∇νξ − ∇νξuµξ)

[
iuαuβ +

1
2
f+αβ

]〉

+
i
4

〈ξξ [uµuν , f−αβ ]〉 − 1
8

〈ξξ [f−µν , f+αβ ]〉

− i
4

〈ξuµξ {uν , f−αβ}〉
}
, (3.9)

where the operators

fµν
± = uFµν

L u† ± u†Fµν
R u (3.10)

are defined in terms of the non-abelian field strengths

Fµν
L = ∂µ�ν − ∂ν�µ − i[�µ, �ν ],

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ]. (3.11)

It is now straightforward to compute in dimensional regu-
larization, the divergent part of the action in terms of an
arbitrary number of flavors and colors

ZWZ∞
1−loop =

−1
16π2(d− 4)

NcNf

1152π2F 2

×
{
4OW

1 +

(
−3 + 6

N2
f

)
OW

2 − 6
Nf

OW
3

− 2OW
4 + 4OW

5 +
8
Nf

OW
6 +

(
−3
2
+

6
N2

f

)
OW

11

− 2OW
12 − 10OW

13 − 3OW
14 +OW

15 + 2OW
16 +OW

17

+
6
Nf

OW
18 − 4OW

19 −OW
20 + 5OW

21

+ 4OW
22 − 6

Nf
OW

24

}
. (3.12)

The operators OW
i are defined in Table 2. This agrees with

the known result [8,17,18]. Notice however, that for the
case Nf = 2, the divergent part vanishes, due to the
Cayley–Hamilton relations. The reason for this is that in
the SU(2) case, there are no anomalies in the absence of a
singlet vector source, i.e. the homotopy group is reduced
to the trivial element. However, the physically interest-
ing situation is when we have a singlet vector source in
the formalism [19]. In this last case the initial symmetry
is extended to include electromagnetic effects. The initial
symmetry group (2.1) is then modified to

SU(2)L × SU(2)R × U(1)V . (3.13)

Bearing in mind that the quark charge matrix, Q =
diag(2/3,−1/3), is not a generator of SU(2)L × SU(2)R
the anomaly fails to vanish. Allowing for such external
sources, the divergences for the two flavor case are

ZWZ∞
Nf =2 =

−1
16π2(d− 4)

Nc

1152π2F 2

{
3oW

6 + 3oW
7 − 3

2
oW
8

+ 6oW
9 − 18oW

10 + 12oW
11 − 12oW

13

}
, (3.14)

where the operators oW
i are listed in Table 3, and oW

6 , . . . ,
oW
13 represent the additional structures required by the
inclusion of the singlet vector source. Since the p4 term
only involves singlet currents in this case, it is no surprise
that the infinity can also be written in terms of the extra
operators only.

We used FORM 3 [22] for some of the calculations in
this section. To ascertain the correctness of our results we
have cross-checked the divergent parts of the η → γγπ0π0

decay in the case Nf = 3 [23] and π0 → γγ and γ → πππ
for the Nf = 2 case [24].

4 Next-to-leading order Lagrangian
for generic Nf

In the previous section we have computed the divergent
part of the WZW Lagrangian at next-to-leading order.
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Table 1. P , C and hermiticity properties of the basic operators

operator P C h.c.

uµ −ε(µ)uµ uT
µ uµ

hµν −ε(µ)ε(ν)hµν hT
µν hµν

χ± ±χ± χT
± ±χ±

fµν
± ±ε(µ)ε(ν)fµν

± ∓fµνT
± fµν

±

As has been mentioned already, for any phenomenological
purpose it is crucial to work out a minimal set of operators
that reproduces the low-energy dynamics. For this purpose
the following list of building blocks are sufficient at next-
to-leading order

uµ, hµν = ∇µuν +∇νuµ,

f+µν , f−µν = ∇νuµ − ∇µuν , χ+, χ−. (4.1)

All others can be reduced to these. The choice of basis
is motivated first of all by the operators arising in (3.12)
and (3.14), and second because of its relative simplicity for
reducing the number of terms. For constructing the La-
grangian, besides the continuous symmetries, one has to
implement the discrete symmetries. For the case of QCD:
P (parity), C (charge conjugation) and h.c. (hermiticity).
The transformation of the basic construction blocks under
these is in Table 1. Hermitian conjugation merely deter-
mines the presence of a global i factor but the use of C
turned out to be quite restrictive in combination with P .
In addition to this we have in the anomalous sector the
presence of an εµναβ tensor, which is odd under parity.

We now sketch the arguments used during the con-
struction.

(i) If a derivative acting on χ± appears in a given op-
erator, partial integration (PI) always allows one to
remove it. The presence of εµναβ allows for at most
one power of χ±.

(ii) Bianchi identities (BI) are used to remove all terms
with more than two derivatives. They can all be
rewritten into terms with f−µν .

(iii) If only one field strength is present in the operator,
we can remove all the extra derivatives acting on it
by PI.

(iv) The EOM and commutators allow one to remove
∇µhµν . Using in addition commutators and anti-
symmetry properties of the indices, we can always
remove other terms with an extra derivative on a h.

(v) Terms involving the external fields only for the Nf

flavor case cannot be constructed. Terms with one χ
or χ† are obviously not chiral invariant; terms with
two field strengths and two extra derivatives can al-
ways be related to terms with three field strengths
using partial integration and the BI. And finally,
terms with three field strengths are forbidden since
the C and P transformations clash.

Using these rules the full list of operators for the Nf

flavor case contains 57 monomials. Further reduction re-
quires a more extensive study of partial integrations and

the use of the lowest order EOM, (3.3), the Bianchi iden-
tities and the Schouten identity [20].

The use of the EOM is equivalent, at lowest order, to
a field redefinition, because the generating functional at
O(p6) contains the classical Lagrangian density at O(p6),
see the proof in [11] as well as the discussion in [21].

The BI yield two relations. The first one follows from
the BI of the field strength tensor Γµν

∇µΓνρ +∇νΓρν +∇ρΓνµ = 0, (4.2)

and reads

∇µf+να +∇νf+αµ +∇αf+µν (4.3)

=
i
2
([f−µν , uα] + [f−να, uµ] + [f−αµ, uν ]) ,

while the second arises using the identity

fµν
− = ∇νuµ − ∇µuν , (4.4)

which leads to

∇µf−να +∇νf−αµ +∇αf−µν

=
i
2
([f+µν , uα] + [f+να, uµ] + [f+αµ, uν ]) . (4.5)

We shall also apply the Schouten identity [20],

Aγεµναβ −Aµεγναβ −Aνεµγαβ −Aαεµνγβ −Aβεµναγ = 0,
(4.6)

which holds for any operator A and can in principle be
applied twice to the terms with six indices.

In the generic SU(Nf )L ×SU(Nf )R case, without the
inclusion of a vector singlet field, there are only 33 linearly
independent relations which follow from the use of PI, BI
and Schouten identities. This leaves us with 24 indepen-
dent monomials contributing to the Nf flavor Lagrangian

LW
6 =

24∑
i=1

KW
i OW

i , (4.7)

where the KW
i are coupling constants. The divergences

can be subtracted using the usual modified MS scheme

KW
i = KWr

i + η
(Nf )
i

µd−4

16π2

{
1

d− 4
− 1

2
(ln(4π) + γ + 1)

}
,

(4.8)
where the subtraction coefficients η(Nf )

i can be read from
(3.12). The operators OW

i are listed in Table 2 using the
notation

[a, b, c] = abc− cba, {a, b, c} = abc+ cba. (4.9)

The subtraction coefficients are repeated there for com-
pleteness.
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Table 2. The list of operators OW
i of the p6 odd intrinsic parity or anomalous chiral Lagrangian. For Nf flavors all 24 are

relevant, for three flavors OW
24 can be dropped. The renormalization coefficients η

Nf

i are listed as well. The flavor trace is denoted
by 〈. . .〉 and we use the notation [a, b, c] = abc − cba and {a, b, c} = abc + cba

monomial (OW
i ) i Nf flavors 384π2F 2η

(Nf )
i i 3 flavors 384π2F 2η

(3)
i

iεµναβ〈χ−uµuνuαuβ〉 1 4Nf 1 12

εµναβ〈χ+ [f−µν , uαuβ ]〉 2
(
−3Nf + 6

Nf

)
2 −7

εµναβ〈χ+uµ〉〈uνf−αβ〉 3 −6 3 −6
εµναβ〈χ− {f+µν , uαuβ}〉 4 −2Nf 4 −6
εµναβ〈χ−uµf+ναuβ〉 5 4Nf 5 12
εµναβ〈χ−〉〈f+µνuαuβ〉 6 8 6 8
iεµναβ〈χ−f+µνf+αβ〉 7 0 7 0
iεµναβ〈χ−〉〈f+µνf+αβ〉 8 0 8 0
iεµναβ〈χ−f−µνf−αβ〉 9 0 9 0
iεµναβ〈χ−〉〈f−µνf−αβ〉 10 0 10 0

iεµναβ〈χ+ [f+µν , f−αβ ]〉 11
(
− 3Nf

2 + 6
Nf

)
11 − 5

2

εµναβ〈hγµ [uγ , uνuαuβ ]〉 12 −2Nf 12 −6
iεµναβ〈hγµ {f+γν , uαuβ}〉 13 −10Nf 13 −30
iεµναβ〈hγµ [f+να, uγ , uβ ]〉 14 −3Nf 14 −9
iεµναβ〈hγµ [uγ , f+να, uβ ]〉 15 Nf 15 3
εµναβ〈f−γµ [uγ , uνuαuβ ]〉 16 2Nf 16 18
εµναβ〈f−µν [uγuγ , uαuβ ]〉 17 Nf 17 15
εµναβ〈f−µνuα〉〈uγuγuβ〉 18 6 18 18
iεµναβ〈f+γµ {f−γν , uαuβ}〉 19 −4Nf 19 −12
iεµναβ〈f+γµ [f−να, uγ , uβ ]〉 20 −Nf 20 −3
iεµναβ〈f+γµ [uβ , f−να, uγ ]〉 21 5Nf 21 15
εµναβ〈uµ {∇γf+γν , f+αβ}〉 22 4Nf 22 12
εµναβ〈uµ {∇γf−γν , f−αβ}〉 23 0 23 0
εµναβ〈f−µν {uγ , uα}〉〈uγuβ〉 24 −6 - -

5 A minimal set for the Lagrangian
with Nf = 2, 3

Besides the previous arguments one can make use of the
Cayley–Hamilton (CH) relation to reduce the number of
operators for the three and two flavor case. Those relations
follow directly from the characteristic polynomial of any
matrix. Their use is rather common and we refer to any
basic text book in linear algebra or to [9,11].

In the three flavor case the use of the CH induces only
one additional relation with respect to the generic case

0 = 2OW
16 + 2OW

17 + 2OW
18 + OW

24 . (5.1)

Thus the number of independent operators for the case
Nf = 3 is 23. They are listed in Table 2 and they form the
Lagrangian density

LW
6 =

23∑
i=1

CW
i OW

i . (5.2)

As in the previous case the infinities can be subtracted
using

CW
i = CWr

i + η
(3)
i

µd−4

16π2

{
1

d− 4
− 1

2
(ln(4π) + γ + 1)

}
,

(5.3)
where the coefficients η(3)

i can be read directly from (3.12)
after using the additional relation (5.1).

In the two flavor case, the CH relations turn out to be
very constraining and the list of 24 monomials in Table 2
can be reduced up to five. These are the first five operators
oW
1 , . . . , oW

5 listed in Table 3. In addition to those opera-
tors the physically interesting case must include the sin-
glet vector source, which is not present in the SU(Nf )L ×
SU(Nf )R formalism [cf. (3.13)] thus allowing a U(1) op-
erator with nonzero trace, i.e. 〈fµν

+ 〉 �= 0. In this last case,
symmetry requirements allow the construction of an ad-
ditional set of 28 monomials. The use of PI, BI and CH
reduces the additional terms up to eight linear indepen-
dent operators. The Lagrangian in this case is given by

LW
6 =

13∑
i=1

cWi oW
i , (5.4)

where the minimal list of operators oi is given in Table 3.
As in the general case the infinities can be subtracted

using
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Table 3. The operators oW
i and the divergent piece η

(2)
i .

Notation as in Table 2. The first five are for traceless external
currents. The last eight are needed if a singlet external vector
current is present

monomial (oW
i ) i 2 flavors 384π2F 2η

(2)
i

εµναβ〈χ+ [f−µν , uαuβ ]〉 1 0
εµναβ〈χ− {f+µν , uαuβ}〉 2 0
iεµναβ〈χ−f+µνf+αβ〉 3 0
iεµναβ〈χ−f−µνf−αβ〉 4 0
iεµναβ〈χ+ [f+µν , f−αβ ]〉 5 0

εµναβ〈f+µν〉〈χ−uαuβ〉 6 3
iεµναβ〈f+µν〉〈f+αβχ−〉 7 3
iεµναβ〈f+µν〉〈f+αβ〉〈χ−〉 8 − 3

2

iεµναβ〈f+γµ〉〈hγνuαuβ〉 9 6
iεµναβ〈f+γµ〉〈f−γνuαuβ〉 10 −18
εµναβ〈f+µν〉〈f+γαhγβ〉 11 12
εµναβ〈f+µν〉〈f+γαf−γβ〉 12 0
εµναβ〈∇γf+γµ〉〈f+ναuβ〉 13 −12

cWi = cWr
i + η

(2)
i

µd−4

16π2

{
1

d− 4
− 1

2
(ln(4π) + γ + 1)

}
,

(5.5)
where the η(2)

i coefficients are listed in Table 3; they follow
from (3.9) and the use of relations between these operators
when we restrict to the SU(2) algebra and directly from
(3.14).

6 Conclusions

In this work we have determined the minimal anomalous
chiral Lagrangian at order p6. The minimal set of terms
is 24 in the general flavor case, 23 for three flavors and 13
for the two flavor case including for the latter the singlet
vector field since it is physically relevant. We have also
recalculated the infinite parts for the general flavor case
which were known earlier [8,17,18] and determined the
infinities in the two flavor case in the presence of a singlet
vector field.

Note: When completing this work, [10] appeared. These
authors work in a different basis, but we fully agree on
the number of terms needed. Our notation was chosen to
match the one of [11].
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